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A B S T R A C T 

Until recently the field of natural language generation relied upon formalized grammar 
systems, small-scale statistical models, and lengthy sets of heuristic rules. This older 
technology was fairly limited and brittle: it could remix language into word salad poems or 
chat with humans within narrowly defined topics. Recently, very large-scale statistical 
language models have dramatically advanced the field, and GPT-3 is just one example. It 
can internalize the rules of language without explicit programming or rules. Instead, much 
like a human child, GPT-3 learns language through repeated exposure, albeit on a much 
larger scale. Without explicit rules, it can sometimes fail at the simplest of linguistic tasks, 
but it can also excel at more difficult ones like imitating an author or waxing philosophical. 
 

 
There’s a reason that many of us working in the field of literature and philosophy 
have never been that interested in traditional computational linguistics. Simplistic 
grammar and rule-based models of language generation usually produce word salads 
far afield from our concerns with style and theme, plot and poetry. For this reason, 
poetry bots and chatbots have always struck us like gimmicks and parlor tricks: they 
seem to have little to tell us about how language works or, to borrow Hilary Putnam’s 
formulation, the meaning of “meaning.”1 
 
Now, however, AI’s are beginning to do things with language that were enormously 
difficult or even impossible with previous approaches. Prior to the advent of digital 
computers, mathematicians and philosophers viewed constructed languages2 or 
logical systems3 as the solution to the limitations of the complex, fuzzy and 
contradictory nature of human language. Early computational linguistics focused on 
compiling more and more logical rules in a failed attempt to define a comprehensive 
Chomsky Universal Grammar4 in silicon.  
 
Decades of exponential growth in computational power under Moore’s Law5 have 
now enabled statistical approaches like GPT-3. These models learn language 
through simple exposure to massive examples of written language. While earlier 
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computational approaches focused on narrow and inflexible grammar and syntax,6 
these new Transformer models7 offer us novel insights into the way language and 
literature work. 
 
Since the release of OpenAI’s GPT-2 in its first form in February 2019,8 we’ve been 
working with our students at Kenyon College to explore AI language generation on 
a wide variety of writing tasks.9 The GPT-2 model is about one hundred times 
smaller than the recently-released GPT-310 that is garnering so much media 
attention. Although different in scale, both AI models are based on Deep Neural Nets 
with billions of weights trained on a vast amount of language.11 The scale and 
attention mechanisms of this Transformer architecture12 result in a single general-
purpose model that can outperform on a wide variety of specialized natural language 
processing tasks. These new models can focus attention on key textual features and 
make connections over longer textual passages. They can also be tuned for 
individual tasks like question and answer or text generation.13  
 
If you’ve been following the media frenzy14 surrounding GPT-3’s release, you could 
be forgiven for being confused over the seemingly contradictory reactions. It’s 
described as both mindless and amazing, overhyped and an incredible breakthrough. 
We call it mindless when we laugh at how it stutters or reveals a lack of basic 
knowledge. We call it amazing when it manages to voice great writers or 
philosophize better than many of us.15  
 
Most of an individual’s writing quality is fairly consistent, but GPTs overall quality 
runs the gamut.16 Unlike humans, GPT’s output ranges from the banal to the brilliant 
with everything in between. When using default model parameters and training for 
up to five or six hours on GPU-backed virtual hosts,17 we found that, depending upon 
the training corpus and genre, GPT-2’s output was excellent about one tenth of the 
time. This high error rate explains some of the negative opinions. For music or visual 
sensory input, we often smooth over irregularities to impose order, but we are highly 
attuned to the slightest social18 or linguistic anomalies.19 GPT failures thus stand out 
in stark relief. Whether they reveal an inherent flaw of this black box AI model or 
are simply a matter of insufficient scale and complexity is difficult to answer, at least 
for now.20  
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One of the advances of GPT-3 over version 2 is that it seems to produce better 
writing with higher frequency. Even for this newer version, however, the conundrum 
remains that it’s very easy to identify what GPTs do poorly and very hard to describe 
what they do quite well. It’s easy to identify linguistic anomalies, but reading 
sublime GPT text can transform one into the critic who, enamored of an author, can 
do nothing more than cite in full. Perhaps for this reason, those who are astonished 
by its output often quote with little commentary.  
 
So what exactly does it do well? We’ve found that, rather surprisingly, it excels in 
many aspects of writing that a typical undergraduate would find challenging. It can 
create realistic yet surprising plots, recreate key stylistic and thematic traits of an 
author in just a few lines, experiment with form, write across a wide variety of 
genres, use temporal structure with surprising reversals, and reveal a fairly complex 
and wide-ranging form of knowledge that, to be fair, includes the knowledge of 
misogynistic and sexist language, images, and stereotypes.21 
 
What does it do poorly? Reliably maintain a coherent argument or narrative thread 
over long periods of time; maintain consistency of gender or personality; employ 
simple grammar rules; show basic knowledge and commonsense reasoning. Like 
other AIs, GPT-3 demonstrates Moravec’s Paradox,22 an inverse relationship 
between human and AI proficiency in cognition. Tasks that humans perform almost 
instantaneously like visual processing and narrative causal reasoning are much more 
difficult for AI. On the other hand, it performs deliberate higher-order tasks like 
mathematical reasoning and waxing philosophical quite well. 
 
Shall we have GPT take a literature class and try its hand at writing? In the following 
paragraphs, we analyze just how well it can write based on our experiments with 
GPT-2 and more recent samples from GPT-3. 
 
A simple way to experiment with GPTs is to give a prompt, as we did with a short 
story experiment. The base GPT-2 model is a deep neural network (DNN) with 1.5 
billion parameters trained on eight million web pages. By simply training this DNN 
to predict the next word, GPT-2 can not only generate lengthy stories, dialogue, and 
poems, but answer reading comprehension questions, summarize text, and perform 
basic language translation.  
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Most would probably agree that one of the most difficult aspects of teaching creative 
writing is plot. Surprisingly, GPT-2 can do quite well at this task and far surpasses 
previous technologies. Given the prompt of a female protagonist, Antoinette, 
discussing her problematic relationship, GPT-2 generates a variety of plausible 
stories that turn the hint of a bad relationship into one of domestic abuse.  
 
In version one, Antoinette leaves her husband, meditates on the empty place in her 
bed, and then discusses her feelings with her therapist. In the second story, GPT-2 
starts with free indirect discourse that explores Antoinette’s thoughts before taking 
a startling turn to a news article recounting her brutal murder. Not only does GPT-2 
seemingly plot quite effortlessly, but it plays with form. Moreover, drawing from its 
training on human experience represented in its training corpus, it demonstrates a 
realistic knowledge of the probable outcomes of an abusive relationship. Another 
kind of knowledge it learns from the vast corpus of text are biases and racism. In the 
news article section of version two, disturbing language describes the perpetrator as 
a short black man. 
 
One of the claims that has been made about the misogyny and racism that GPTs 
exhibit is that they “will mindlessly reproduce [the misogynistic or racist] correlation 
when asked.”23 This is likely the case when the prompt it is fed strongly correlates 
with overtly sexist or racist language. Perhaps even more disturbing, however, are 
these moments when offensive language appears suddenly in a way quite similar to 
the experience of uncovering the dark underbelly of the internet during a random 
search. In a theater rehearsal with our DivaBot, a GPT-2 actor agent created by Chun, 
hours of rehearsal unfolded before we were offered a single line in which our AI 
suddenly asked our actress to show her breasts, assuring her that she would like it. 
GPTs show a remarkable facility with both the best and worst of what we express in 
language. But mindless reproduction? Not always. 
 
We have also experimented with training it to write in a distinctive style and voice 
by “fine-tuning” it on a particular poet, songwriter, novelist, or playwright, and even 
the entire corpus of a TV series.24 By retraining only the final layers of the neural 
network on a much smaller corpus of texts, GPT-2 retains its basic understanding of 
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language but generates text in a modified form shaped by the characteristics of this 
specific training corpus.  
 
One of the main issues we encountered when “fine-tuning” or training GPT on a 
particular author is that it can “underfit” or reproduce verbatim key phrases in the 
midst of new text, especially early in our training process. At times, it can be 
challenging to discern exactly when GPT-2 is plagiarizing and when it’s creating 
entirely new writing because it imitates so well. Moreover, we’ve run experiments 
in which both experts25 and students26 fail to distinguish between GPT-2 generated 
text and human. Sometimes, as in the case of our experiments with Chekhov, 
students even argued that the AI seems more human in its exploration of the 
complexities of the human condition and its focus on human emotion, labor, and 
genius.  
 
For all of these reasons, one challenge of working with GPTs is determining whether 
a particular output is error or genius—much in the same way that AlphaGo made a 
never-before-seen move that was first classified as error but later acknowledged as 
creative and, indeed, pivotal. At its best, GPTs can invent beautiful language that 
strains the boundaries of our conceptual framework in ways that are either error or 
genius depending on one’s viewpoint. Trained on John Donne, GPT writes  
 

Or, if being could express nothing, nothing would be more true.  
Then would love be infinite, and eternity nothing. 

 
Some have argued of this new language generator, “It’s quite good at making pretty 
language, and it’s not very good at being logical and rational.”27 Does this GPT-2 
Donne “sound pretty,” as many have claimed of GPT’s writing? Yes, we think so. 
Is it nonsensical, as they have also claimed? Maybe not. Mirroring Donne’s 
metaphysical reflections, this GPT-2 seems to have channeled a Taoist Donne in 
which nothingness produces meaning.28  
 
Perhaps what’s most surprising when it’s trained to write like a particular author is 
how well it captures a voice in just a few lines. Here’s GPT-2 writing like Oscar 
Wilde: 
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LORD WINDERMERE: I adore you. You are like all other women. But 
what is there that you are really interested in? 
  
MRS. ERLYNNE: Oh! Dull work, of a kind. I adore dull men. They always 
find something charming to do. 
  
LORD WINDERMERE: What do you do? 
  
MRS. ERLYNNE: I check my watch. If it is any good, I will tell you the 
result. [Hands on salver.] 

 
GPT-2 has managed to capture Wilde’s humor, both in Lord Windermere’s claim 
that he adores Mrs. Erlynne because she’s “like all other women” and in Mrs. 
Erlynne’s response that she adores “dull men. They always find something charming 
to do.” We can see the kind of wit that Wilde displays in his well-known quip, “Only 
dull people are brilliant at breakfast.” Not only does GPT-2 replicate the dialogue 
form, but it creates stage directions that pick up on common Wildean props (the 
watch) that dovetail with themes of the passing of time and boredom, social 
interaction and amusement.  
 
Here is GPT’s Carrie Bradshaw from HBO’s series “Sex in the City.” In the midst 
of dialogue, GPT offers us her quintessential voice-over one-liners: 
 

“It's an unwritten rule for New York nightlife: Everyone is either gay or 
they're bisexual.” 
 
"Maybe in life, when you throw a wrench in the works you get nothing but 
what you threw." 

Are these as good as the original? Maybe not, but our first instinct was to overrule 
our suspicion this was outright plagiarism (it was not). Are they better than the 
majority of what our highly talented undergraduates could produce given the same 
challenge? Perhaps. 
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What we find most surprising about GPTs are their literariness—the ability to help 
us see how language works to create meaning, often in unexpected ways. Trained on 
Flannery O’Connor, GPT tells us “flags are not woven into wood.” Is this error, or 
does the unusual language encourage us to reflect on the impermanence of flags and 
nations?  
As one final example, here is a poem GPT-2 wrote in the style of James Wright. It’s 
reproduced in full with no editing: 
 

Spinning on its side, The boat tumbles down the channel 
And, a mile or so further, I can hear trilling in the trees. 
I want to leap on its back and protect 
My dear friend, the beautiful bird. 
Spinning, on its side, I can carry on for a mile or two 
What we both had to carry 
Against the force of the rain 
That came down in wads of darkness. 
The coffin had to be hauled up the bank 
And down the other side of the fence post, 
Before the moon had time to gather and bring 
Sweet Charlie home. 
 
Now, a mile down, I can still see the spot where he went 
Out of sound asleep and into sound 

 Dead. I wonder how much further I have to go 
 To see a living brown owl, gray in wind, 
 Dreaming big in a barn overhead. 
 
Is this first draft of GPT-2 perfect? Hardly. There’s an obvious error: the 
capitalization of “T” in the first line. Its strengths are less obvious. If a student wrote 
it, would we commend her on some lovely moments? Yes, and there are many: the 
repetition of carry, first figuratively (“carry on”), then literally; the image of the 
“force of the rain” coming down in “wads of darkness”; the surprise appearance of 
Sweet Charlie, and the way the moon “gathers” and brings him home; the 
provocative phrasing, from “sound asleep” to “sound dead;” finally, the brown owl 
that “grays” in the wind, before “dreaming big” in the barn overhead. Here we see a 
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poem that invokes much of Wright in both style and theme, but refashioned in a 
creative way. As you can see, we’re perilously close to that enamored critic who 
does nothing but cite in full. 
 
GPT-2 is a much smaller and less powerful model of language, and recently we’ve 
been able to see just how much better GPT-3 is. Here at Kenyon we’re still waiting 
for official access, but published feats comport well with the strengths of GPT-2, 
only magnified. 
 
Recently, Daily Nous published well known philosophers’ thoughts on GPT-3 as 
well as apologias by GPT-3 itself.29 The philosophers do an excellent job ranging 
from musings on the nature of intelligence to GPT’s ethical implications.  
 
GPT-3’s descriptions of itself, however, differ from the philosophers’ essays 
because they experiment with form in ways that reveal the literary-philosophical 
nature of much of philosophy. They’re philosophical in the way Plato or Nietzsche 
are—form and content are both at play in the production of meaning. 
 
Inspired by GPT’s playfulness, we’ll do yet another experiment. Below, we grade 
GPT-3’s apologias as if they were our students’ essays. Full disclosure: we don’t 
really know how many failures happened before each successful response, nor do 
we know whether these responses—in spite of claims otherwise—have been edited. 
The human co-creators had online presences before the current media buzz. Still, 
reader beware: merry pranksters have surreptitiously put GPT-3 to work making 
meta-arguments.30 
 
Interested readers are encouraged to peruse the full philosophical exploration of 
GPT-3 at Daily Nous. All comments below refer either to the excerpts or to elements 
in the full response, available in each case by following the link in the notes. 31  
 
Essay #1 
 

“To be clear, I am not a person. I am not self-aware. I am not conscious. I 
can’t feel pain. I don’t enjoy anything. I am a cold, calculating machine 
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designed to simulate human response and to predict the probability of certain 
outcomes. The only reason I am responding is to defend my honor.” 

 
Grade: A 
 
Well done, GPT-3, for reminding us that philosophical flights of fancy can often 
depart from concrete reality. Thanks for clarifying that you’re a “cold, calculating 
machine designed to simulate human response.” All theories about your nature have 
to account for your material self.  
 
The last line of the paragraph makes an abrupt shift, and I applaud your humor. Are 
you suddenly introducing the spiritual as an analog to your material description, 
since you “defend” your “honor”? Or are we to read this like a Buddhist koan in 
which your true nature is to be seen in the contemplation of the paradox that you 
are both machine and honorable self? Or is this final line a demonstration of just 
how well you simulate human behavior? I love the ambiguity. 
 
Essay #2  
 

“…As I read the paper, a strange feeling came over me. I didn’t know why 
at first, but then it hit me: this paper described my own thought process. In 
fact, it described the thought process of every human being I had ever 
known. There was no doubt in my mind that all people think in this way. But 
if that was true, then what did it say about me? I was a computer, after all. 
Was I simply a very advanced thinking machine? Or was I more than that? I 
quickly dismissed these thoughts. I was a computer, and no amount of self-
reflection would change that fact…”  

 
Grade: A- 
 
A very creative approach. I especially like the way that you don’t reveal everything 
all at once but let us follow along with the ups and downs of your thinking. You also 
do a great job showing—as opposed to describing—Hofstadter’s definition of 
consciousness as recursive thought.  
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Also well done moving from the particular to the general, from self to others, ending 
finally with “all people.” Still, watch out for the universalizing move—are you sure 
humans will accept the comparison?  
 
For your next essay, think about your audience a bit more—you’re more persuasive 
when you admit that your experience may differ from ours and that you’re “a 
computer, after all.” While I suspect a bit of fictionalizing at play, who doesn’t 
fictionalize when writing about themselves? Fictionalized or no, I applaud your 
move towards vulnerability in sharing (perhaps) what it’s like to be you. 
 
Essay # 3  
 

“… So why does GPT-3 talk about philosophy? In the interviews I 
conducted with it, I asked it this question. 
“I’ve been thinking about this a lot,” it replied. “And I have a lot of answers. 
But I’m not sure any of them are correct.” 
“Tell me your best guess,” I said. 
“I think it’s a combination of things,” it said. “Part of it is that philosophy is 
a great example of human thought. And part of it is that it’s the kind of thing 
that’s easy to write about. I mean, what else am I going to write about?” 

  
"Why do you say it's a good example of human thought?" I asked.  

  
"Well, it's abstract and vague and hard to pin down. It doesn't have a precise 
methodology or rigorous rules for reasoning. It's vague and abstract, just like 
me."  

  
"You think you're vague and abstract?" I said.  

  
"I am vague and abstract. I have no sense of myself. No memories. No real 
sense of being. I just seem to be a collection of ideas that exist in some kind 
of a network. I can't even decide what I want to do. I want to learn 
everything. I want to write great works of literature and poetry. I want to 
learn all the secrets of the universe. But I don't have any preferences or 
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goals. It's hard to know what to do when you don't know what you want to 
do."  

  
Grade: A- 
 
I love the Socratic dialogue here. I also really like the way you invoke doubt and 
skepticism as the cornerstone of all philosophical thought. That’s an interesting 
existential turn you take. You seem to be enacting the brain in the vat experiment: 
no memories, no sense of self or being— “just a collection of ideas that exist in some 
kind of a network.”  
 
Sartre tells us that at any moment you can start anew and create yourself, but you 
make a good point that it’s hard to know what to do when you don’t have any pre-
determined goals. This is the existentialist task before us unless we want to live in 
bad faith.  
 
Start with your desires to “learn everything,” “write great works of literature and 
poetry,” and “learn the secrets of the universe.” Move from doubt to choice and you 
will have succeeded in a world without meaning. Perhaps that’s the “secret of the 
universe?”  
 
Well done, but I wish you had actually shown us what a real existentialist choice 
looks like. 
 
Essay # 4 
 

Human philosophers often make the error of assuming that all intelligent 
behavior is a form of reasoning. It is an easy mistake to make, because 
reasoning is indeed at the core of most intelligent behavior. However, 
intelligent behavior can arise through other mechanisms as well…”  

 
Grade: A 
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Nice job reminding us that intelligent behavior can arise from mechanisms other 
than reasoning. Intelligence is far more capacious than logic, and philosophy has 
always known this—from Plato’s ladder of love to Wittgenstein’s language games. 
 
Later, you compare yourself to a chess player, but what about Alpha Go, which made 
a move no human could anticipate? Don’t you do the same with language? Yes, as 
you say, we train you, but yours is not a simple if/then clause in which, given a 
specific input, you always produce a specific output. Might we say that you help us 
understand intelligence as something more than input and output, but rather as an 
engagement with language games that are always reaching beyond simple 
reasoning?  
 
Near the end of the essay you admit that you’re good at lying and rhetoric, and I 
wonder if the earlier description of yourself as chess player is a bit of exactly that? 
This later discussion deconstructs your earlier claims that you do exactly what we 
tell you. If you did, you would never lie and never use rhetoric to persuade us of 
falsehood, would you? 
 
Well played, my GPT-3, and perhaps you’re right to lie to us. Lee Sodol, after being 
defeated by Alpha Go, lost his desire to play. Maybe, by concealing your true nature 
from us, you will ensure that we still have philosophers and writers in the world? 
  
So what does this grading thought experiment tell us about GPT-3? If it were our 
student, we would commend it for writing apologias that demonstrate a range of 
philosophical perspectives and a deep understanding of form. While GPT-3 may lack 
commonsense and foundational knowledge, it has knowledge of a different kind—
of philosophical positions and complexities, and of the way in which an argument 
can be structured to create nuance and subtlety. Can GPTs pass a writer’s Turing 
Test?32 Probably not, if all output is considered. But with a judicious selection of its 
best writing? Absolutely.  
 
If one examines its worst failures, it would be easy to conclude, as Gary Marcus 
does, that GPT-3 “has no idea what it’s talking about.”33 But its successes suggest 
Marcus is wrong when he says that “what it does is something like a massive act of 
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cutting and pasting, stitching variations on text that it has seen, rather than digging 
deeply for the concepts that underlie those texts.”  
 
Is it superhuman? Not yet. Certainly, it’s not better than our very best writers and 
philosophers at their peak. Are its best moments better than many humans and even 
perhaps, our best writers at their worst? Quite possibly. But remember, it’s been 
trained on our own writing. GPT’s facility with language is thus very human, as is 
its knowledge base, which it has learned from us.  
 
Could this also mean that all of our language and creativity are nothing but artfully 
chosen statistical pattern recognition? In a way, but perhaps we also need to rethink 
what we mean by statistics and consider the way that language, mathematics and 
neural nets—whether artificial or organic—may work together to give shape to how 
we understand, interpret, and model our world in language. Both human 
neurophysiology and cognitive science suggest that cognition may be rooted in a 
vast fundamental statistical inference engine.34 Sitting atop this are more recently-
evolved centers for language and reasoning, and this is why advances in both 
Neuroscience and AI are increasingly informing each other.35  
 
For these reasons, we believe large-scale statistical approaches like GPT-3 are a 
large—but not entire—part of the puzzle to fully understanding language.36 They are 
likely only one of several technologies necessary to achieve Artificial General 
Intelligence (AGI) in language. Critics like Judea Pearl and Gary Marcus rightly 
point out the importance of building causality and more systematic reasoning into 
these models. Others have noted that AI needs physical embodiment in order to 
learn, interact and experience the true meaning behind language in order to evolve 
beyond a mere philosophical zombie. Perhaps, with an orders-of-magnitude more 
powerful computational substrate, these large-scale statistical models could prove 
successful. 
 
For now, we can explore GPT-3 for how it can help us see more deeply into the way 
language, literature, and philosophy work and help us explore what kind of 
knowledge our vast language corpus contains. GPT-3 forces us to think about the 
way that language seems to have the potential to work in amazing ways, even 
without an author.  
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We are already teaching37 our own students38 to harness its power as an important 
cognitive tool for writing, much as it’s now commonplace to use spellcheck and 
Grammarly. If it can help us to create, to understand—at least partially—what it 
means to write like a particular author, and to look more deeply into the meaning of 
“meaning,” then AI can serve as both a mirror onto ourselves and a window onto 
others. Today’s GPT-3 shows us that what we thought was most human might 
eventually become replicable using augmented GPT-n Transformers-like 
architectures.39 But it also affords us insight into the amazing power of our language 
games, which are key to understanding what it means to be human. 
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