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A B S T R A C T 

In November 2012, the newly created Open Science Collaboration published a brief article 
announcing a multi-year effort to "estimate the reproducibility of psychological science." 
The collaboration was directed by Brian Nosek of the University of Virginia and would 
eventually involve over 250 co-authors. According to the collaboration, reproducibility was 
one of, if not the single most defining feature of the social endeavor known as "science." 
"Other types of belief," the authors write, "depend on the authority and motivations of the 
source; beliefs in science do not." The ability to reproduce scientific results across time and 
space -- the ability to have results be independent of the individuals involved -- is what the 
authors argued makes science science. And yet the eventual findings of the reproducibility 
project showed a remarkable reproductive failure. Over half of all studies failed to indicate 
similar effects upon replication. The very value upon which science was supposed to be 
founded appeared to be an exception rather than a norm. 
 

 

In November 2012, the newly created Open Science Collaboration published a brief 
article announcing a multi-year effort to "estimate the reproducibility of 
psychological science."1 The collaboration was directed by Brian Nosek of the 
University of Virginia and would eventually involve over 250 co-authors. According 
to the collaboration, reproducibility was one of, if not the single most defining 
feature of the social endeavor known as "science." "Other types of belief," the 
authors write, "depend on the authority and motivations of the source; beliefs in 
science do not."2 The ability to reproduce scientific results across time and space -- 
the ability to have results be independent of the individuals involved -- is what the 
authors argued makes science science. And yet the eventual findings of the 
reproducibility project showed a remarkable reproductive failure.3 Over half of all 
studies failed to indicate similar effects upon replication.4 The very value upon 
which science was supposed to be founded appeared to be an exception rather than 
a norm.5 

Nan Z. Da's study published in Critical Inquiry is part of a growing body of work 
that seeks to introduce the idea of replication into the humanities.6 While the practice 
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of reproducing prior work is far from normalized in the humanities, it is to be 
welcomed. As editor of this journal, I am committed to fostering an environment 
where we can work together to assess the reliability and fruitfulness of our work. 
The aim of such endeavours is to arrive at a greater degree of consensual forms of 
knowledge about behavior in the world. As the authors of the OSC write, the value 
of replication, when done well, is that it can "increase certainty when findings are 
reproduced and promote innovation when they are not." The value of replicability is 
itself one of the affordances of the very methods Da seeks to critique. 

And yet despite Da's aims of testing the reproducibility of computational literary 
research, her work fails to follow any of the procedures and practices established by 
replication projects like the OSC. Indeed, her article cites no relevant literature on 
the issue, suggesting little familiarity with the topic. While invoking the 
epistemological framework of replication—that is, to prove or disprove the validity 
of both individual articles as well as an entire field—her practices follow instead the 
time-honoured traditions of selective reading from the field of literary criticism. Da's 
work selectively collects a "handful" of articles for review; selectively cites certain 
aspects or figures from these articles; and selectively frames all computational 
methods within a single narrow definition of significance testing, which she herself 
does not follow. And yet from this selective stew, Da makes the broadest, most 
sweeping claims imaginable: computational literary studies is an invalid field. 

Compare this with the conclusions of the OSC, who, after collaborating for two years 
with original authors and establishing rigorous standards for replication, found that 
over half of all experiments failed to replicate and yet still write the following, which 
is worth quoting in full: 

After this intensive effort to reproduce a sample of published 
psychological findings, how many of the effects have we established 
are true? Zero. And how many of the effects have we established are 
false? Zero. Is this a limitation of the project design? No. It is the reality 
of doing science, even if it is not appreciated in daily practice. Humans 
desire certainty, and science infrequently provides it. As much as we 
might wish it to be otherwise, a single study almost never provides 
definitive resolution for or against an effect and its explanation. The 
original studies examined here offered tentative evidence; the 
replications we conducted offered additional, confirmatory evidence. In 
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some cases, the replications increase confidence in the reliability of the 
original results; in other cases, the replications suggest that more 
investigation is needed to establish the validity of the original findings. 
Scientific progress is a cumulative process of uncertainty reduction that 
can only succeed if science itself remains the greatest skeptic of its 
explanatory claims.7 

The OSC, in other words, made a good faith effort to work with other members of 
their field to test the reproducibility of past research; attempted to gather a reasonable 
cross-section of studies representative of the field; established criteria for success 
and failure when it came to replication; and even after finding a lower than 50% 
replication rate made no sweeping claims about the validity of their own field or 
even the individual studies under review. 

Da does none of this. It is precisely this combination of highly selective evidence, 
inconsistent computational methods, alongside the most sweeping claims 
imaginable, that casts serious doubt on the credibility of Da's scholarship and raises 
important questions as to the qualifications of the editorial board of Critical 
Inquiry to assess such efforts as we move forward.8 

Da's work is valuable, then, not because of the computational case it makes (that 
work remains to be done), but in the way it highlights with remarkable consistency 
a much larger problem facing the field: how are we going to combat the problem of 
selective reading? Or to put it in reverse, how can we begin to address the problem 
of generalization, the ways in which we move from individual observations (no 
matter how few or how many) to more general empirical claims about things in the 
world? Whether we are replicating the work of others or making novel arguments 
that have not been aired before, the problem of generalizability is central to scholarly 
knowledge production. And yet it has remained a wholly undertheorized and 
underdiscussed concept within the humanities. 

In what follows I discuss the conceptual and methodological shortcomings of Da's 
work in order to illustrate the challenges that traditional critical methods face when 
it comes to the practice of generalization. Da's work is valuable in so far as it 
foregrounds so many of the problems that accompany traditional critical models of 
evidence that are used to make large-scale evidentiary claims and why it is this, far 
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more than the bogeyman of computation Da invokes, that needs to be addressed as 
we move forward. 

Samples, or Good Old-Fashioned Selection Bias 

When undertaking their replication project, the OSC generated a sample of 100 
studies taken from three separate journals within a single year of publication. Their 
rationale was the following: 

These were selected a priori in order to (i) provide a tractable sampling 
frame that would not plausibly bias reproducibility estimates, (ii) 
enable comparisons across journal types and subdisciplines, (iii) fit 
with the range of expertise available in the initial collaborative team, 
(iv) be recent enough to obtain original materials, (v) be old enough to 
obtain meaningful indicators of citation impact, and (vi) represent 
psychology subdisciplines that have a high frequency of studies that are 
feasible to conduct at relatively low cost. 

Notice how they do not claim that their sample is a perfect representation of the 
entire field. No sample can be. However, they do provide a rationale for the articles 
included as well as all of the limitations that are associated with these choices (these 
studies are not the most recent, they need to match available expertise of replicators, 
and they are "relatively low cost" studies). 

Da on the other hand chooses 14 articles from different years and different journals. 
Her stated rationale is the following: 

I discuss a handful of CLS arguments (chosen for their prominent 
placement, for their representativeness, and for the willingness of 
authors to share data scripts or at least parts of them). 

No one would expect Da to replicate as many articles as the OSC. But notice how 
there is no actual concrete number of publications indicated (I arrive at 14 because 
there are 14 pieces from which she draws a statistic) nor is there a consistent 
framework for selection. Instead, Da chooses a "handful" based on what she 
identifies as "prominence", "representativeness", and the "willingness of authors to 
share data." The first and second concepts are not defined. Is one article in the 
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Journal of Cultural Analytics more "prominent" than another, justifying why some 
but not all articles from CA were included? Does prominent mean "more cited," 
"more downloaded," written by a person at a more prestigious institution or with 
more Twitter followers? All of these could be possible ways of measuring 
prominence but Da doesn't bother. In terms of representativeness, what are these 
articles representative of? Da never says. Representative of people's age? Training? 
Gender? Participation in a research grant? Who knows. The third point is indeed a 
good one, as you cannot replicate something without something to replicate. Here 
too though there are a number of articles in CA that do have data and code that Da 
chooses not to replicate. Why not? While the OSC authors indicate at great length 
why articles were or were not chosen, Da never specifies any of this. It's part of the 
black box of criticism. 

Indeed, the only clear linkage appears to be that these studies all "fail" by her criteria. 
Imagine if the OSC had found that 100% of articles sampled failed to replicate. 
Would we find their results credible? Da by contrast is surprisingly only ever right. 
This is the evidentiary mode of the literary critic, who only picks examples to support 
her argument and suppresses those that don't. It's a rhetorical exercise of persuasion, 
not an empirical one of proof. And yet Da's work aims to make empirical claims 
about the validity of other observations in the world. 

Da's work thus nicely highlights one of the primary failings of traditional criticism 
with respect to evidence—it only ever works with positive examples. When was the 
last time you read an article in literary or film studies that said, I watched a bunch of 
movies and only some of them showed this effect I'm talking about. In fact, most 
don't, but I think they're important anyway. A more credible practice of 
generalization requires that we examine both positive and negative examples in 
order to understand the representativeness (or distinctiveness) of the sample we are 
observing and the representativeness (or distinctiveness) of the individual 
observations within those samples. Anything less is uncredible. 
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Passages, or what is one CV evidence of? 

We can move one layer down to questions of representation within articles as well. 
What portion of an article is representative of that article? If a sample is intended as 
a representation of a larger population or world, we need some way of deciding what 
aspects of an article (or any document) are representative of that article (or 
document). This too is an extremely challenging task. Once again, the OSC makes 
this process explicit when they write: 

By default, the last experiment reported in each article was the subject 
of replication. This decision established an objective standard for study 
selection within an article and was based on the intuition that the first 
study in a multiple-study article (the obvious alternative selection 
strategy) was more frequently a preliminary demonstration. 

And once again the authors then spend time reflecting on the limitations of their 
selection criteria. For sure, failing to replicate the final experiment of an article does 
not discredit the whole study. The OSC authors acknowledge as much, which is why 
their ultimate benchmark is experiments ("studies" in their words) not articles. 

Not so Da. She never specifies what exactly she will be replicating in each article, 
nor does she explicate under what conditions she could arrive at a replicate/failed-
to-replicate judgment, nor does she specify at what point enough articles failing is 
satisfactory to conclude that a whole field has failed. It all happens once again inside 
the black box of critical judgment. Not unsurprisingly she proceeds to apply different 
criteria to every article, making debatable methodological choices along the way, as 
well as numerous errors, that are clearly designed to foreground differences.9 She 
misnames authors of articles, mis-cites editions, mis-attributes arguments to the 
wrong book, and fails at basic math.10 And yet each of these assertions always adds-
up to the same certain conclusion: failed to replicate. 

Let me provide some examples. For example, in my own work she highlights the 
fact that just because Augustine's Confessions exhibits a certain lexical pattern does 
not mean that all texts that do so are "conversional" in my terms.11 Precisely. Which 
is why I spend over 6,000 words in the article validating whether the novels so 
identified can be labeled as such and provide a figure of the importance of doing so 
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(see Fig. 2 in the original article). She then makes much of stemming the Latin text 
and normalizing the PCA for visualization and proceeds to produce a graph that 
largely reproduces the original findings in my article, which hinges on the strong 
partition between the pre- and post-conversional books. (The fact that she claims 
that the later books aren't related to Augustine's conversion because they "are about 
Genesis" would give Augustine scholars a good chuckle.) It is notable that much of 
Da's analysis of articles throughout her piece conditions on PCA, which is one small 
piece of the text-analytical toolkit. Indeed, in my own piece it is only used for 
purposes of visualization and not for the actual calculations used in the final model 
I construct to measure conversionality in novels -- which Da never addresses. 

In her critique of my piece on Wertherness in Goethe's corpus co-authored with 
Mark Algee-Hewitt, she claims that we fail to provide a null model to prove causality 
(i.e. that Werther actually influenced these later works).12 That would indeed be a 
challenge. But we set out to do no such thing. As Mark Algee-Hewitt writes in his 
response to Da, "Even a cursory reading of the article reveals that we are not 
interested in questions of the 'influence of Werther on other texts': rather we are 
interested in exploring the effect on the corpus when it is reorganized around the 
language of Werther. The topology creates new adjacencies, prompting new 
readings: it does not prove or disprove, it is not right or wrong - to suggest otherwise 
is to make a category error."13 Our work is inspired by generations of literary theory 
on interextuality that explores literary writing for associations and relations between 
language. This approach is entirely fitting within the normal tradition of hermeneutic 
close reading, only using new forms of textual mediation. And it is entirely fitting 
within the paradigm of "exploratory data analysis" in the field of statistics. In other 
words, Da misreads as both a humanist and a statistician. 

Perhaps even more telling, is the way Da only chooses to discuss articles of mine 
where I explicitly don't do hypothesis testing and ignores all of the other ones where 
I do in order to generalize about the absence of hypothesis testing in either my work 
or the field at large, that is, to fit the data to her hypothesis.14 This is the kind of 
selective data analysis that is deeply suspicious. Worse still, Da's accusations about 
the failure of (some) articles in CLS to do hypothesis testing are made in an article 
that itself lacks any such testing. There appears to be one standard for Da and one 
for everyone else. 
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Let me use one final example of the strategic value of Da's selectivity for her work. 
Da makes a claim that money is being wasted on CLS. Given that software is free, 
she says, it "begs the question of why we need 'labs' or the exorbitant funding that 
CLS has garnered." Her evidence for this exorbitant funding is a link to my CV in 
footnote 5. In what context is "one CLS author" sufficient evidence of funding for a 
field? 

But perhaps Da's insinuation is that I am personally being wasteful. Here too we 
could use evidence instead of insinuation. Had she inquired with the Social Science 
and Humanities Research Council of Canada, she would have learned that 50.5% of 
my personal funding last year was dedicated to funding students. At private U.S. 
institutions like Da's (or Critical Inquiry's home institution), graduate students in the 
humanities are most often funded independently from departments and faculty, 
subsidized through the high cost of undergraduate tuition or gifts by wealthy donors 
that are used to maintain access to elite higher education for their descendants. In 
the public system of Canada, our students in both the arts and sciences are largely 
funded by the individual research grants of faculty. I am very proud of the fact that 
with one grant alone I have financially supported over 75 students in the past five 
years. Much of the rest of the funding is either transferred to partner institutions, 
used on administrative costs, or used to organize annual conferences (is Da opposed 
to conference travel I wonder, because this is definitely worth debating). But Da's 
goal is to smear not understand. She exhibits a basic lack of knowledge about 
educational funding in Canada and the nature of large-scale research funding in 
general. Nor does she disclose where her own funding came from to pay for her 
research assistants. For sure, there is a robust debate to be had about the best use of 
academic funding. But a link to a CV in a footnote is no way to have it. This is 
reminiscent of conservative tactics of citing MLA paper titles out of context: 
"Intransitive Encounter"? what a bunch of mumbo jumbo. It has no place in 
academic discourse. 
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Methodological Plurality, or the Perspectival Nature of 
Knowledge 

Perhaps the greatest limitation of Da's piece is the extremely narrow definition of 
statistical inference and computational modeling she applies to the pieces under 
review. In Da's view, the only appropriate way to use data is to perform what is 
known as significance testing, where we use a statistical model to test whether a 
given hypothesis is "true."15 There is no room for exploratory data analysis, for 
theory building, or predictive modeling (machine learning) in her view of the field. 
This is particularly ironic given the fact that Da herself performs no such tests! She 
holds others to standards to which she herself is not accountable. Nor is it an accurate 
account of the state of the field, where numerous articles have been written about 
the limits of precisely the methods Da seems to prize (though not practice).16 

For Da, there is only a single way to read. This way is at once homogenous and 
totally unspecified. There is no mediation, no situatedness, and for sure no diversity 
to Da's model of reading that she puts forward in her piece as an antidote to 
computational reading. As numerous articles on the importance of computational 
modeling have argued, textual knowledge is always situated and dependent on the 
observer's position in the world and the tools, techniques, and technologies through 
which their point of view is constructed.17 Modeling makes that positionality 
explicit. Da's own position, the assumptions guiding her choices and interpretations, 
is left entirely unexplicated in her piece. 

In its narrowness, Da's work appears deeply out of touch with existing research 
related to reading, meaning, and probabilistic modeling from other fields. For 
example, she makes much of what she sees as a central limitation of computational 
methods: the recourse to counting words ("CLS papers make arguments based on 
the number of times x word or gram appears"; " In CLS data work there are decisions 
made about which words or punctuations to count and decisions made about how to 
represent those counts. That is all."). And yet decades of work in computational 
linguistics has drawn attention to the analytical value of modeling language use 
probabilistically as a way of modeling human behavior and judgment.18 This is by 
no means a settled matter, but to suggest that probabilistic models have no bearing 
in assessing textual meaning is obtuse. Da wants us to believe that even if these 
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models work for other kinds of documents, they don't work on literary texts. Where 
is the evidence that probabilistic models work for every other document in the world, 
except the ones that are fictional in their content and that Da conveniently wishes to 
be the exclusive expert on? Where scholars are trying to infer meaning from 
distributions of word probabilities (never individual words), it is important to 
emphasize that not only are such representations potentially good approximations of 
human judgments about texts and meaning, but that such reductive representations 
of texts or ideas are the necessary cost of scale. You cannot scale up your claims 
without paying a price. See Bruno Latour. 

Nan Da says that data is inappropriate for the study of literature. No if's, and's or 
but's. She says we would be better off just reading more books. The point I want to 
underscore (and have been making for some time) is that Da's solution of 
only reading books by hand is of limited value for making certain statements about 
literature. Notice how my position has two caveats while Da's has none. There is no 
scenario in her model of literary study that allows for quantitative evidence (or any 
kind of technological mediation). In my scenario, quantitative evidence can be a 
valuable complement to assist scholars in the process of generalization and help 
make our evidentiary claims more credible. As Da herself argues, "Typical 
applications of textual data mining involve a trade-off: speed for accuracy, coverage 
for nuance." Precisely. In order to scale-up our evidence, we have to sacrifice 
nuance. That is the cost of scale. If you want to make claims about "the nineteenth-
century novel" or "computational literary studies," it defies credibility to do this with 
a few examples, no matter how complex your reading. We do indeed need to do a 
better job of knowing what we are doing, just not in the way Da suggests. 

 

Conclusion 

All of the limitations of Da's endeavor should not blind us to remaining skeptical of 
our own research. To be doubtful is a good thing. Replication and questioning of 
previous results belongs at the heart of scholarship. As the authors of the OSC paper 
write, scholarship "can only succeed if it itself remains the greatest skeptic of its 
explanatory claims." For sure, there have to be errors and problems with previous 
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computational research. It would be statistically impossible for it all to be 100% 
reliable. This is the very definition of research as a form of "Forschung," a searching 
for knowledge, understanding, and insight. Research necessarily involves error and 
failure. 

What we need then, and what I am committed to fostering with this journal, are 
supportive and collaborative engagements with each other's work and the work of 
other fields to build consensus about what we (think we) know and what we remain 
uncertain about and the best way to understand those things better. This requires 
questioning the findings of computationally driven research, but it also means testing 
the claims of non-computationalists with larger samples and more transparent 
methods. It has to work both ways. 

To conclude, let me summarize what I see as some of the primary goals that data-
driven literary study is trying to achieve in order to address Da's central challenge. 
This is my own personal list and I hope others might add more. So why am I using 
computation to study literature? In order to: 

1. address the problem of generalization and insufficient or poorly-sampled 
evidence; 

2. address intrinsic qualities of texts, i.e. that language use is highly repetitive 
and can be modeled by probability distributions; 

3. identify longer-term historical patterns than traditional methods and 
periodizations allow for; 

4. draw attention to the technological mediations that govern reading (esp. 
through the practice of self-reflexive modeling). 

Nan Da's article is an attempt to polarize and prohibit. It is to be frank, very much 
of our time. I would take the exact opposite approach: bridge and build consensus. 
And there two roads diverged as they say. 
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